

Introduction

- Ricebean[(Vigna umbellata (thumb) Ohwi and Ohashi]
 syn Phaseolus pubescens
 syn Phaseolus calcaratus
- \rightarrow 2n=2x=22
- It is an important grain legume uses as pulses and vegetable in mid hills.
- It contains 22.0, 0.6, 59.0 and 5.2 percent of protien, fat, carbohydrates and fibre, respectively)
- It is also rich in calcium, iron and phosphorus.

- ▶ It has comparatively high quantity of amino acids, methionine and tryptophan
- ➢ It is grown successfully where Green gram and black gram can not be grown.
- ➤ It is highly photosensitive short-day crop so its cultivation is restricted to rainy season in hills
- photo insensitive variety can be successfully grown in spring

- Photo insensitive lines when planted in spring it took 3 to 18 days more in flower initiation indicated that thermosensitive nature of the crops. (Gupta,S et.al2005
- This is moderately resistant to MYMV and highly tolerant to bruchid infestation.
- The rice bean has many varieties, varying in seed color and size and time taken for maturity

Crossing behavior and inheritance

- The flowers of rice bean are self fertilized but
 - Natural out crossing 27 to 81% in 86 to 100 % lines
- Monogenic inheritance is reported in seedling color.
- Earliness is controlled by dominance gene.

- Stem colour in seed ling (Rs-rs) and pigmentation in flower bud (Psb-psb) were monogenetically inherited (Das and Dana, 1980)
- Flower colour standard and wing (Lya-lya), Days to flower (E-e) and helium ring color (Ph-ph) are monogenetically inherited (Das and Dana, 1981b)
- Stem color, pod color and seed coat base and mosaic are also independent. (Das and Dana, 1981b

They proposed the following gene symbols: Tst, straw colour; tsg, sap green colour; tsb, garnet brown colour; Md, dense mosaic spotting; Ml, light mosaic spotting; and m, no mosaic spotting.

- Dominance is strawcolor>sap greencolor>garnet brown
- Dense mosaic>light mosaic and no mosaic
- ➤ Pod color was controlled by two non allele interacting genes (Ab-ab and Lp-lp) resulting in 13:3 ratio.

- Grain yield has significant negative correlation with DF,DM,Plant hight,and 100 seed wt
- DF,DM,PH and 100 sw were significant positive correlated with each other.
- Path analysis showed that DF has high positive direct effect but DM has direct negative effect on seed yield.

- ➤ revealed that100seed wt ,seed yield exhibited high estimates of phenotypic and genotypic coefficients of variance(>50%) along with high heritability> 95%having moderate genetic advance (Kishore,N et al,2005)
- High heritability of DF,DM,PH

Objectives

- To understand the breeding behaviors of the crop.
- To create the variability.

Materials and method

- Four Rice bean accessions were selected on the basis of previous year performance
- Reciprocal crosses of all four lines were made
- Crops were planted in raised bed due to rainy season in AGD, Khumaltar on 5th august, 2008.
- Crops were covered with Net.
- Emasculation was done in morning and pollination on afternoon.

Selected lines for crossing

ccessio s	Collection	Plant habits	Seed colour	DF	DM	Pod length	No of seeds /pod	100 sw
PGR 882	Bajhang	Determ inate	mottled	82	136	6.1	10	20.6
IPGR 391	Syangja	Determ inate	Mottled	118	153	7.2	6	7
RGR 91	Dang	Indeter minate	Yellow	96	136	6.4	8	15.6
RGR 11	Gulmi	Indeter minate	Red	96	159	8.5	9	14.1

Crossing Results

Crosses	Total	Female	Male	F1 9	F1 9pods&seeds)		
				Mottled	Red	Yellow	
NRGR7882x LRGR 91	7	Mottled	Yellow	-		7(30)	
NRGR7882x LRGR111	10	Mottled	Red	7(25)	3(12)		
NRGR9391x LRGR 91	15	Mottled	Yellow	15(40)	-		
NRGR9391x LRGR111	3	Mottled	Red	3(8)	-	-	

Crosses	Tot al	Femal e	Male	F1 9pods&seeds)			Remarks
				Mottl ed	Red	Yellow	
LRGR91 xNRGR7882	1	Yellow	Mottled	-	-	1(2)	
LRGR91 xNRGR9391	11	Yellow	Mottled	1(2)	-	10(35)	
LRGR111 xNRGR7882	6	Red	Mottled	-	2(4)	4(10)	
LRGR111 xNRGR9391	20	Red	Mottled	-	15(40	5(9)	
LRGR 117 xNPGR9391	6	Dark brown	Mottled				6dark brown(10)

LRGR44 X NPGR00184

Genotyp e	Cr	Black	Maro on	Bro wn	Yell ow	Total	Rem
LRGR44	90	0	4	0	0	94	Pure
NPGR 0184	0	85	3	0	9	97	Pure
LRGR44	51	20	0	1	12	84	Mixed
NRGR01 84	38	54	2	0	5	99	Mixed

LRGR44 X NPGR00184

Genot ype	Cr	Black	Maro on	Brow n	Yell ow	Total	Rem
LRGR 44	96	0	4	0	0	100	Pure
LRGR 0184	0	88	3	0	9	100	Pure
LRGR 44	61	24	0	1	14	100	Mixed
NPGR 0184	38	55	2	0	5	100	Mixed

LRGR91 XLRGR111

Genotype	Yello w	Maro on	Mottled	Black	total	Rem
LRGR91	602	4	20	0	671	Pure
LRGR111	110	624	19	2	765	Pure
LRGR91	261	2	4	0	287	Mixed
LRGR111	27	216	7	0	252	Mixed

LRGR91 X LRGR00111

Genot ype	Cr	Black	Maro on	Brow n	Total	Rem
LRGR 91	90	6	1	3	100	Pure
LRGR 111	14	2	82	2	100	Pure
LRGR 91	91	7	1	1	100	Mixed
LRGR 111	11	0	86	3	100	Mixed

LRGR91 XLRGR111

Conclusions

- Further studies is needed to confirm either parents are homozygous or not?
- Three or four markers should be identified and taken to further studies.
- ➢ Population will be planted at Rampur to conclude.

